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Abstract. We present computer simulations of anomalous diffusion,〈r2(t)〉 ∼ at1−δ , in
two dimensions. The Monte Carlo calculations are in excellent agreement with previous
renormalization group calculations. Interestingly, use of a high-quality pseudorandom number
generator is necessary to observe the anomalous diffusion. A linear-feedback, shift-register
method leads to incorrect, superdiffusive motion of the random walkers.

1. Introduction

Certain types of physically realizable disorders cause anomalous sub-diffusion in two
dimensions [1, 2]. In these unusual cases the mean-square displacement of random
walkers does not increase linearly with time, but rather increases sub-linearly with time,
〈r2(t)〉 ∼ at1−δ. The exponent for this scaling is continuously variable in the strength of
disorder. In fact, the exponent can be found exactly for the type of singular Gaussian disorder
that leads to sub-diffusion [3–8]. This special disorder corresponds physically to quenched,
charged defects. The defects can either be true, electrostatic charges or topological ‘charges’.
In either case, the quenched charges interact with the moving particles of interest via a long-
range, logarithmic potential.

Diffusion in a variety of random media has been considered by numerical simulation.
Typical disorders that have been investigated include non-singular potential disorder [9],
random fluid flows [10–12], fractal media [13–15], optical molasses [16] and topologically
disordered structures [17]. The random walk Monte Carlo simulation method is used in most
numerical studies of diffusion. To date, however, there are no numerical studies that verify
the renormalization group predictions of anomalous diffusion in singular, two-dimensional,
random potential fields. Preliminary results were cited in the review by Bouchaud and
Georges [18], but a formal publication did not ensue.

This same type of quenched, ‘ionic’ disorder subjects chemical reactions to transport
limitations and causes anomalous kinetic behaviour. Two dimensions is particularly
interesting, since this is also the upper critical dimension for bimolecular reactions [19–
22], in addition to being the upper critical dimension for the charged disorder. The kinetics
of chemical reactions, of course, have always been a subject of interest for scientists and
engineers. In most cases, the reactant diffusion is normal and the effect of diffusion
limitations on the rate of chemical reaction is easy to calculate. Anomalous diffusion,
however, leads to anomalous kinetics. In this case, the effect on the rate of chemical
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reaction is not so widely known. The kinetics of the reactionsA + A→ ∅, A + B → ∅,
and A+ + B− λ



τ
AB in singular disorder have been derived analytically [21–23]. In

these references, a field-theoretic treatment of anomalous kinetics was worked out, and
renormalization group predictions were derived. These studies show that the reactions
become transport limited in the long-time regime. At long times, where the diffusion is
anomalous, the kinetics also becomes anomalous.

Simulations to test these theoretical predictions would be of great interest. A necessary
prerequisite for proceeding with these numerical studies of anomalous kinetics is first the
ability to simulate anomalous diffusion. This ability requires both constructing the disorder
and performing the diffusive motion in the quenched disorder.

In this article, we present numerical observations of anomalous diffusion in two
dimensions using the Monte Carlo method. In section 2 we discuss the appropriate form
of the quenched disorder. In section 3 we introduce our method for creating the random
potential and for simulating motion in this potential. Our results are presented in section 4.
A discussion of the results is presented in section 5, where a comparison is made with the
renormalization group predictions. We conclude in section 6.

2. The quenched disorder

We consider the motion of one charged particle in a sea of quenched charges in two
dimensions. The statistics of the motion of the particle is completely determined by the
statistics of the quenched potential field that the particle encounters. The quenched charges,
which obey bulk charge neutrality, give rise to a charge–charge correlation function that
vanishes ask2 for small k in Fourier space. The potential, which is the convolution of the
charge distribution with the logarithmic Coulomb law, gives rise to a potential–potential
correlation function that diverges as 1/k2 for small k [24]. This long-ranged correlation
function for the potential experienced by the diffusing particle is exactly of the form that
leads to anomalous diffusion.

In two dimensions the interaction between the charges and the diffusing particle, and
between the quenched charges themselves, is logarithmic. Electrostatic charges in two
dimensions, or line charges in three dimensions, interact with this law. Certain topological
defects in two dimensions also interact with this same law. For example, dislocations
in solids interact with a logarithmic law due to induced long-range elastic strain fields.
Disclinations in hexatic membranes also interact with this effective law, due to screening of
the induced strain fields by free dislocations. Typical examples of these topological defects
include line defects in three-dimensional crystals, vortices in superfluids, and flux lines in
superconductors [25].

The exponent for the mean-square displacement depends indirectly on the density
of defects via the prefactor of the potential–potential correlation function. The form of
correlation function appropriate for smallk is χ̂vv(k) ∼ γ /k2, whereγ is the strength of
the disorder, and̂χvv(k) =

∫
ddr exp(ik·r)χvv(r) is the Fourier transform of the correlation

function. We are free to chose different behaviour away from the origin in Fourier space. A
natural choice for this correlation function is the inverse of the diffusive Green’s function.
On a square lattice with spacing1r we, thus, use the form

χ̂vv(k) = γ (1r)2

4− 2 cos(kx1r)− 2 cos(ky1r)
. (1)

Note that this form ofχ̂vv(k) has the appropriate limiting behaviour as the lattice spacing
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become infinitesimally small and as the wavelength becomes large. The particles move
through this potential field starting from random initial positions. Renormalization group
calculations have rather convincingly shown that the mean-square displacement exhibits
an anomalous behaviour at long times [1–8, 26]. On a log–log scale, the mean-square
displacement as a function of time has a slope of 1− δ, where

δ =
[

1+ 8π

β2γ

]−1

(2)

andβ = 1/(kBT ).

3. Simulation method

We now consider the creation of the Gaussian random potentialV (r) on a lattice. The
potential takes on real values at each lattice site. The probability of observing any specific
potential distribution is given by

P [V ] = e−βH [V ]

Z
(3)

where

βH [V ] = 1
2

∫
ddr ddr′ V (r)χ−1

vv (r − r′)V (r′)

= 1

2

∫
ddk

(2π)d
|V̂ (k)|2χ̂−1

vv (k)

= 1

2

∑
k

(1k)d

(2π)d
|V̂ (k)|2χ̂−1

vv (k). (4)

Z is a normalizing constant, and1k = 2π/(N1r). Here the lattice is ind dimensions
(d = 2 in our case), hasN unit cells on a side, and has lattice spacing1r. The Fourier
transform is given byV̂ (k) = ∫ ddr V (r) exp(ik · r) = ∑r(1r)

dV (r) exp(ik · r). Since
V̂ (−k) = V̂ ∗(k), we have

βH =
∑
k1/2

σ(k)

(
1k

2π

)d
|V̂ (k)|2χ̂−1

vv (k) (5)

with k1/2 meaning half ofk space and

σ(k) =
{

1
2 if k is on a special point

1 otherwise
(6)

where the special points are the origin, the corners of the lattice, and the intersections ofkx-
axis andky-axis with the lattice boundaries. In this form,V̂ (k) and V̂ (k′) are independent
as long ask 6= k′. The potentialV̂ (k) is Gaussian with the following variance for the real
and imaginary components fork not special

〈[ReV̂ (k)]2〉 = 1
2�χ̂vv(k) (7)

〈[Im V̂ (k)]2〉 = 1
2�χ̂vv(k) (8)

where� = (N1r)d is the volume of the system. Ifk is special,

Im V̂ (k) = 0 (9)
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and

〈[ReV̂ (k)]2〉 = �χ̂vv(k). (10)

Also, by definition,V̂ (0) = ∫ ddr V (r). Since it is not the actual magnitude of the potential
but rather its gradient that is of interest, we defineV ′ = V − 〈V 〉. In this form, V̂ ′(0) = 0
and∇V ′ = ∇V . We use the potentialV ′ in the simulation. To create the potentialV ′(r)
that we need, we first creatêV ′(k) in half of k-space by generating independent Gaussian
random numbers with variances given by equations (7)–(10). We then generate the other
half of k-space using the relation̂V ′(−k) = V̂ ′∗(k). Finally, we generateV ′ in real space
by performing an inverse fast Fourier transform [27].

Alternatively, we can construct a real potential by first generating a complexV (r) and
then extracting a real potential,V ′(r). Specifically, we generate a complex Gaussian field
with the probability distribution

P [V ] = Z−1 exp

[
−
∫

ddr ddr′ V ∗(r)χ−1(r − r′)V (r′)
]
. (11)

Note that the fields ReV (r) and ImV (r) are each Gaussian. Thus, we find

〈V ∗(r)V (r′)〉 = χ(r − r′). (12)

We define

V ′(r) = ReV (r)+ ImV (r). (13)

V ′(r) is also Gaussian, since∫
ddr ddr′ V ∗(r)χ−1

vv (r − r′)V (r′) =
∫

ddr ddr′ ReV (r)χ−1
vv (r − r′)ReV (r′)

+
∫

ddr ddr′ ImV (r)χ−1
vv (r − r′)ImV (r′)

−i
∫

ddr ddr′ ImV (r)χ−1
vv (r − r′)ReV (r′)

+i
∫

ddr ddr′ReV (r)χ−1
vv (r − r′)ImV (r′). (14)

The complex part of the above equation vanishes, sinceχ−1
vv (r − r′) = χ−1

vv (r
′ − r) for a

medium obeying equation (1). From our definition ofV ′, we find

〈V ′(r)V ′(r′)〉 = χvv(r − r′). (15)

This definition ofV ′ leads to a real, Gaussian potential field with the correct statistics. It
is, therefore, an equally valid quenched random potential.

With the potential established, we shift focus to the initial conditions for the particle and
the mechanics for diffusion. In the theoretical treatment of anomalous diffusion, the particles
are assumed to be uniformly distributed over the lattice. In our simulation, therefore,
we choose the initial positions of the random walkers from a uniform distribution. In
addition, we also examine the case of a Boltzmann distribution of initial positions, as would
be appropriate, for example, for a nuclear magnetic resonance (NMR) experiment on an
equilibrated system. The particles are selected from a random initial position on a finite
lattice, and they begin to diffuse att = 0. We could let one particle diffuse an infinitely long
time and record its behaviour exactly as prescribed by theory. Depending on whether the
diffusion is self-averaging, we may also need to average over different realizations of the
potential. Unfortunately, lattice effects will appear at long times as a result of the periodic
boundary conditions. Another method, which is more efficient and yields better statistics, is
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to sample many random walkers for a shorter period of time. This will work as long as the
observation time is long enough to be in the scaling region, that is, as long as the system
is large enough. We have investigated finite-size effects and found that a square lattice of
N = 2048 unit cells on a side is sufficiently large to allow the particles to be in the scaling
regime for our range of parameter values. At short times, the particles will display normal
diffusion behaviour. At intermediate times, the diffusivity will tend to zero. At long times,
we will observe the anomalous sub-diffusion, where〈r2(t)〉 is expected to be proportional
to t1−δ as t →∞.

The statistics of the random walk on the lattice are conveniently described by a master
equation. This master equation defines the probabilities and rates of all possible hops that
the random walker can execute. We exactly solve this master equation by a Poisson process
[28]. In one dimension, the master equation looks like

dPn
dt
= Un−1Pn−1−DnPn +Dn+1Pn+1− UnPn (16)

wherePn is the probability for being at sitexn at time t , Un is the rate at which transitions
occur fromxn to xn+1 andDn is the rate at which transitions occur fromxn to xn−1. In a
two-dimensional space, we denote the rates byτ (1)n,m, τ (2)n,m, τ (3)n,m, andτ (4)n,m, whereτ (1)n,m andτ (2)n,m
are rates at which transitions occur fromxn,m to xn+1,m andxn−1,m, respectively, andτ (3)n,m
and τ (4)n,m are rates at which transitions occur fromxn,m to xn,m+1 andxn,m−1, respectively.
The two-dimensional master equation is

dPn,m
dt
= τ (1)n−1,mPn−1,m − τ (1)n,mPn,m + τ (2)n+1,mPn+1,m − τ (2)n,mPn,m

+τ (3)n,m−1Pn,m−1− τ (3)n,mPn,m + τ (4)n,m+1Pn,m+1− τ (4)n,mPn,m. (17)

We demand that this master equation lead to a Boltzmann distribution of the random walkers
at long times. In other words, we want the stationary probabilityPSn of being at sitexn,m
to be

PSn =
(1r)2e−βV (xn,m)

Z
. (18)

This distribution will arise if detailed balance is enforced. For example, the condition of
detailed balance for transitions in thex-direction is

τ
(2)
n+1,mPn+1,m = τ (1)n,mPn,m. (19)

This criterion implies, with the use of the Boltzmann distribution,

Pn+1,m

Pn,m
= τ (1)n,m

τ
(2)
n+1,m

= e−[βV (xn+1,m)−V (xn,m)] . (20)

Hence, one consistent expression for the ratesτ (1)n,m andτ (2)n,m is

τ (1)n,m =
D

(1r)2
eβ[V (xn,m)−V (xn+1,m)]/2 (21)

τ (2)n,m =
D

(1r)2
eβ[V (xn,m)−V (xn−1,m)]/2. (22)

Similar relations hold for the transition rates in they-direction:

τ (3)n,m =
D

(1r)2
eβ[V (xn,m)−V (xn,m+1)]/2 (23)

τ (4)n,m =
D

(1r)2
eβ[V (xn,m)−V (xn,m−1)]/2. (24)
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We use these transition rates to generate a stochastic Poisson process. Specifically, a
particle begins at a sitexn,m. The particle waits at this site with an exponentially distributed
amount of time characterized by its mean value

〈dt〉 = 1

τ
(1)
n,m + τ (2)n,m + τ (3)n,m + τ (4)n,m

. (25)

We generate the actual time increment via

dt = − 1

τ
(1)
n,m + τ (2)n,m + τ (3)n,m + τ (4)n,m

ln(x) (26)

wherex is a uniformly distributed random number with 0< x 6 1. We then generate a
second uniformly distributed random number that we use to pick one of the four possible
nearest-neighbour hops according to their probabilities:

P(xn,m→ xn+1,m) =
τ (1)n,m

τ
(1)
n,m + τ (2)n,m + τ (3)n,m + τ (4)n,m

P (xn,m→ xn−1,m) =
τ (2)n,m

τ
(1)
n,m + τ (2)n,m + τ (3)n,m + τ (4)n,m

P (xn,m→ xn,m+1) =
τ (3)n,m

τ
(1)
n,m + τ (2)n,m + τ (3)n,m + τ (4)n,m

P (xn,m→ xn,m−1) =
τ (4)n,m

τ
(1)
n,m + τ (2)n,m + τ (3)n,m + τ (4)n,m

.

(27)

The particle hops to the new site, and time is incremented by dt .
On a finite lattice with periodic boundary conditions, particles re-enter the lattice when

they reach the boundaries. Furthermore, the shortest path between two particles may cross
the boundary. This is significant, because we are fundamentally interested in the implications
of anomalous diffusion for chemical reaction, and the appropriate measure for defining
distance between two reactants is the length of the shortest path. We, therefore, define the
distance travelled by a diffusing particle as

r2 = min
p,q
{[i − i0+ pN ]2+ [j − j0+ qN ]2}(1r)2. (28)

Here i0 andj0 are the initial position coordinates of the particle,N is the dimension of the
lattice, and the minimum over integerp andq mathematically defines the shortest path.

An important component of the simulation is the random number generator. A desirable
generator ensures that the correct random statistics are used in lattice creation, choice of
initial particle positions, choice of hoping directions, and generation of time increments.
In this study, we used two random number generators: one that is a sum of three linear
congruential generators [29] and an exclusive-or linear-feedback, shift-register method [30].
Unless specified otherwise, all the data that are shown were generated using the sum of
three linear congruential generators method.

4. Results

We are interested in the long-time diffusive behaviour of the particles diffusing on the
disordered lattice. Since the diffusion is anomalous, the slope of ln〈r2〉 versus lnt will
not be unity. This slope will approach 0 as the strength of disorder goes to∞ and will
approach 1 as the strength of disorder goes to 0. We, therefore, examine disorder strengths
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of varying magnitudes. We find that values ofβ2γ in the range 1–20 produce convincing
and high-quality results. Forβ2γ too small, the slope will be 1− ε, with ε smaller than the
noise in our simulation, making the anomalous diffusion difficult to observe. Whenβ2γ

is too large, strong fluctuations in the particle behaviour appear at short times because of
significant lattice effects. Within the chosen range ofβ2γ , we observe well behaved curves
that exhibit distinct disorder-strength-dependent slopes.

We perform several simulations with different initial starting positions for the random
walker. We collect these data as histograms of〈r2(t)〉 versust , with a temporal bin width
of t0 = 1. When plotted on a logarithmic scale, these histograms will have much more
data for large ln(t/t0) than for small ln(t/t0). In order to counteract this effect, we use
an exponential sequence for selecting data from the histogram when performing the fit to
determine the slope. Data for both short times, when the diffusion is not yet anomalous,
and long times, when finite-size effects are significant, was not used in the fitting procedure.
This procedure leads to widely spaced, independent data points. A convenient byproduct
of this procedure is that the standard error of the fit gives a reliable estimate of the error in
the measuredδ. These error bars are included in all of the figures. Note that there could
also be a systematic error in each simulation related to the fact that only a single realization
of the disorder is employed. This systematic error seems to be small, as simulations with
different realizations of the disorder lead to values ofδ that differ approximately by the
standard error of the fit.

We pick enough different starting positions and follow each simulation long enough
to ensure adequate statistics. We found thatNdo = 10 000 particles is sufficient to
produce fairly smooth histograms for the mean-square displacement. We also found that
Nlen = 2000 000 steps in each random walk is enough for the particles to reach the
asymptotic scaling regime. We found that a lattice of sizeN = 2048 is sufficient to
give results that span a broad range of times in the scaling regime. In all simulations, the
lattice spacing1r is set equal to unity, which we can enforce by a spatial rescaling. We
also set the bare diffusivity equal to unity, which we can similarly enforce by a temporal
rescaling. These rescalings will not affect the scaling behaviour at long times. The value
of δ observed at long times, for example, is independent of these bare values.

Figure 1 shows the slopes determined from simulations with strengths of disorder
1 6 β2γ 6 20. We have used equation (5) to create the lattice in these simulations.
We have chosen the initial position of the random walker uniformly on the lattice, in direct
correspondence to the case considered by the renormalization group studies. The data points
represent slopes of the mean-square travel distances of the random walkers as a function
of time. We calculated these values by fitting log〈r2(t)/(1r)2〉 as a function of ln(t/t0),
as described above. For each value of the disorder strength, three independent runs were
performed on different realizations of the disorder. We show in figure 1 the average slope
(circles) and the associated standard error of the fit (error bars) for each strength of disorder.
The renormalization group predictions are shown as the broken curve. We see excellent
agreement between the simulation results and the theoretical predictions, with nearly all the
observed values within one standard deviation of the expected value. The varying standard
deviations reflect randomness in the potential fields, initial positions, and hopping rates. The
slopes do not include contributions from short-time behaviour or long-distance behaviour
(〈r2〉 on the order of(N1r)2). Both of these regimes exhibit significant lattice effects,
effects not considered in the renormalization group studies.

Figure 2 shows similar data derived from lattice potentials constructed from complex
fields, equation (13). These results should be identical to those of figure 1. We observe that
the average values are, again, consistent with the theoretical predictions. Interestingly, the
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Figure 1. The Monte Carlo results for the slope of the mean-square displacement,m, as a
function of strength of disorder,β2γ . We have used equation (5) to generate the lattice and we
placed the random walker uniformly and randomly at the beginning of each random walk. The
broken curve shows the renormalization group predictions.

Figure 2. The same quantities as in figure 1, but using equation (13) to generate the random
potential lattice.

standard errors are consistently smaller than those of figure 1.
Figure 3 shows the slopes that result when the particle initial positions are chosen from

a Boltzmann distribution. These conditions mimic those of a transient experiment, such as
pulsed field gradient NMR, performed on an equilibrated system. We see agreement between
the observed values and the renormalization group predictions, indicating that this change
in initial conditions is not ‘relevant’ in the technical sense. We do see less consistency in
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Figure 3. The same quantities as in figure 1, except that we have placed the random walker
randomly according to a Boltzmann distribution at the beginning of each random walk.

Figure 4. The same quantities as in figure 1, but using the the correlation functionχ̂vv(k) =
γ exp(−k2/2)/k2 in creating the random potential.

the standard deviations due to the non-uniform sampling of the rugged potential landscape.
Figure 4 shows the slopes that result when one uses the correlation function

χ̂vv(k) = γ e−k
2/2

k2
. (29)

This correlation function has the same smallk behaviour as equation (1), but distinct
behaviour for largek. The long-time behaviour of these two correlation functions are
expected to be the same, as long asβ2γ is not renormalized by changes in the largek
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Figure 5. The mean-square displacement versus time forβ2γ = 1 and χ̂vv(k) =
γ exp(−k2/2)/k2. We have used equation (5) to generate the lattice and we placed the random
walker uniformly and randomly at the beginning of each random walk. Note the plateau in the
mean-square displacement at long times.

behaviour. The prefactor of the mean-square displacement, however, is observed to be
significantly larger for equation (29) than for equation (1).

5. Discussion

The results of the computer simulations agree well with the predictions of the
renormalization group studies. For each value ofβ2γ , the simulations yielded a slope
of ln〈r2/(1r)2〉 versus ln(t/t0) in excellent agreement with the analytical predictions. An
important observation is that even at long times,β2γ does not become renormalized. This
is a non-trivial observation, as details in the simulation that are technically ‘irrelevant’
could renormalizeβ2γ a finite amount. For all values ofβ2γ , lattice effects produce
normal diffusive behaviour at short times. This normal diffusion crosses over to anomalous
diffusion fairly quickly, within a time corresponding to relatively few hops by the particle.
At very long times, the mean-square displacement reaches a maximum value due to the
periodic boundary conditions. This maximum value is proportional toN2, since the mean-
square displacement defined in equation (28) is always less than or equal to(N1r)2/2.
Figure 5 shows the mean-square displacement measured in a typical run. The plateau at
long times is clearly visible. The normal diffusion at short times crosses over to anomalous
diffusion so rapidly that it is not visible with the histogram bin width we used (t0 = 1).

As discussed, both methods for generating the random lattice potentials, equations (5)
and (13), lead to Gaussian random fields with the correct correlation function. Both methods
should produce the same results for the mean-square displacement. We find that, indeed,
both approaches give the same average result for the mean-square exponent. The real
lattice generation is more efficient in terms of memory utilization. One implication of this
efficiency, however, is that the real lattice generation is constructed from fewer independent
random numbers and is a more severe test of the pseudorandom number generator. The
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fewer degrees of freedom used when implementing equation (3) compared with equation (13)
is most likely what leads to the larger error bars in figure 1 when compared with figure 2.

The long-range correlations in the random potential allow, in principle, for the possibility
that the mean-square displacement depends on the distribution of initial conditions. All
of the theoretical predictions, for example, are based upon the assumption of a uniform
distribution of initial conditions. In experiments upon equilibrated systems, however,
the initial conditions are distributed in a Boltzmann manner. We see from figure 3 that
Boltzmann initial conditions lead to the same mean-square exponent at long times.

Two forms of the potential–potential correlation function, equations (1) and (29), are
used to explore the dependence on irrelevant, largek details. At large distances and long
times, the observed scaling behaviour that results from the two correlation functions would
differ only if technically irrelevant details of the lattice renormalizeβ2γ . We found that,
indeed, the prefactor of the relation〈r2(t)〉 ∼ at1−δ does depend on these irrelevant details.
As we see from figure 4, however, the exponent is independent of these details.

The choice of pseudorandom number generator to use is an important consideration in all
Monte Carlo simulations. A pseudorandom number generator is used in three components
of the present simulation: in lattice creation, in selecting the particle initial positions, and
in creating the transition rates and hop directions. The two random number generators
employed in our simulation are a sum of three linear congruential generators [29] and an
exclusive-or, linear-feedback, shift-register method with table length 55 [30]. Both of these
generators are thought to be fairly reliable. All of the results in figures 1–5 were produced by
the sum of three linear congruential generators method. Figure 6 compares the mean-square
displacements produced by these two generators. The three linear congruential generators

Figure 6. Mean-square displacement versus time forβ2γ = 10 andχ̂vv(k) = γ exp(−k2/2)/k2.
We have used equation (5) to generate the lattice and we placed the random walker uniformly
and randomly at the beginning of each random walk. The top full curve comes from using the
exclusive-or, linear-feedback, shift-register pseudorandom number generator [30], and the bottom
full curve comes from the sum of three linear congruential pseudorandom number generators
[29]. The bottom curve has the expected slope of 0.71 = 1− 1/(1+ 8π/10) at long times.
The top curve has a slope of 1.09 at the longest times shown, which indicates superdiffusion.
Broken lines with slopes of 0.71 and 1.09 are shown for convenience.



7246 V Pham and M W Deem

method results in slopes for all values ofβ2γ that are consistent with theory. Interestingly,
the linear-feedback, shift-register method always leads to slopes greater than expected.
Using this generator, one would conclude thatβ2γ is renormalized a finite amount, by
some unknown factor. In fact, the factor is the inadequacy of the pseudorandom number
generator! At long times, the exponent of the mean-square displacement exceeds unity. This
superdiffusive behaviour is in conflict with a rigorous bound known for diffusion in Gaussian
random media: limt→∞〈r2(t)/t〉 6 4D exp[−β2χvv(0)] [31]. In fact, at long times, this
linear-feedback, shift-register method appears to produce ballistic behaviour,〈r2(t)〉 ∼ at2
(data not shown). This incorrect superdiffusive behaviour appears only for potentials that
lead to anomalous diffusion. The long-range correlations in the potential, which lead to the
anomalous diffusion, apparently couple to the residual correlations in this pseudorandom
number generator. Similar, poor results from this type of generator have been observed in
another system with long-range correlations—the Ising model at its critical point [32]. In
this case, a feedback generator with a short table length led to predicted critical exponents
differing from the true values by many times the estimated standard deviation.

6. Conclusion

We find a satisfying match between theory and numerical results in our simulation of
anomalous diffusion. We found that anomalous behaviour occurs in the long-time regime,
with a transition from normal diffusion at short times. We find that the prefactor for the
scaling of the mean-square displacement is renormalized by short-distance correlations in the
potential, although the exponent is not. Reasonable distributions for the initial conditions
lead to the same exponent for the mean-square displacement. Interestingly, the correct
anomalous diffusion behaviour is observed only with a high-quality pseudorandom number
generator.
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